Publications by Author: Dahan, Ofer

2010
Benito G, Rohde R, Seely M, K??lls C, Dahan O, Enzel Y, Todd S, Botero B, Morin E, Grodek T, et al. Management of alluvial aquifers in two Southern African ephemeral rivers: Implications for IWRM. Water Resources Management [Internet]. 2010;24 :641–667. Publisher's VersionAbstract
This paper summarises innovative research into the assessment of long-term groundwater recharge from flood events in dryland environments of the Kuiseb (Namibia) and the Buffels (South Africa) rivers. The integrated water resource management (IWRM) policies and institutions affecting the exploitation of groundwater resources in each of these developing countries are compared. The relatively large alluvial aquifer of the Kuiseb River (similar to 240 Mm(3)) is recharged from irregular floods originating in the upper catchment. Reported abstraction of 4.6 Mm(3) per year is primarily consumed in the town of Walvis Bay, although the groundwater decay (pumping and natural losses along the period 1983-2005) was estimated in 14.8 Mm(3) per year. Recharge is variable, occurring in 11 out of 13 years in the middle Kuiseb River, but only in 11 out of 28 years in the middle-lower reaches. In contrast, the Buffels River has relatively minor alluvial aquifers (similar to 11 Mm(3)) and recharge sources derive from both lateral subsurface flow and floodwater infiltration, the latter limited to a recharge maximum of 1.3 Mm(3) during floods occurring once every four years. Current abstractions to supply the adjacent rural population and a few small-scale, irrigated commercial farms are 0.15 Mm(3) yr (-aEuro parts per thousand 1), well within the long-term sustainable yield estimated to be 0.7 Mm(3) yr (-aEuro parts per thousand 1). Since independence in 1990, Namibia`s water resource management approach has focussed on ephemeral river basin management of which the Kuiseb Basin Management Committee (KBMC) is a model. Here, some water points are managed independently by rural communities through committees while the national bulk water supplier provides for Walvis Bay Municipality from the lower aquifers. This provides a sense of local ownership through local participation between government, NGOs and CBOs (community-based organisations) in the planning and implementation of IWRM. Despite the potential for water resource development in the lower Buffels River, the scope for implementing IWRM is limited not only by the small aquifer size, but also because basin management in South Africa is considered only in the context of perennial rivers. Since 2001, water service delivery in the Buffels River catchment has become the responsibility of two newly created local municipalities. As municipal government gains experience, skills and capacity, its ability to respond to local needs related to water service delivery will be accomplished through local participation in the design and implementation of annual `integrated development plans`. These two case studies demonstrate that a variety of IWRM strategies in the drylands of developing countries are appropriate depending on scales of governance, evolving policy frameworks, scales of need and limitations inherent in the hydrological processes of groundwater resources.
2009
Morin E, Grodek T, Dahan O, Benito G, Kulls C, Jacoby Y, Langenhove GV, Seely M, Enzel Y. Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2009;368 :262–275. Publisher's VersionAbstract
Flood water infiltrates ephemeral channels, recharging local and regional aquifers, and it is the main water source in hyperarid regions. Quantitative estimations of these resources are limited by the scarcity of data from such regions. The floods of the Kuiseb River in the Namib Desert have been monitored for 46 years, providing a unique data set of flow hydrographs from one of the world's hyperarid regions. The study objectives were to: (1) subject the records to quality control; (2) model flood routing and transmission losses; and (3) study the relationships between flood characteristics, river characteristics and recharge into the aquifers. After rigorous quality-testing of the original gauge-station data, a flood-routing model based on kinematic flow with components accounting for channel-bed infiltration was constructed and applied to the data. A simplified module added to this routing model estimates aquifer recharge from the infiltrating flood water. Most of the model parameters were obtained from field surveys and GIS analyses. Two of the model parameters-Manning's roughness coefficient and the constant infiltration rate-were calibrated based on the high-quality measured flow data set, providing values of 0.025 and 8.5 mm/h, respectively. This infiltration rate is in agreement with that estimated from extensive direct TDR-based moisture measurements in the vadose zone under the Kuiseb River channel, and is low relative to those reported for other sites. The model was later verified with additional flood data and observed groundwater levels in boreholes. Sensitivity analysis showed the important role of large and medium floods in aquifer recharge. To generalize from the studied river to other streams with diverse conditions, we demonstrate that with increasing in infiltration rate, channel length or active channel width, the relative contribution of high-magnitude floods to recharge also increases, whereas medium and small floods contribute less, often not reaching the downstream parts of the arid ephemeral river at all. For example, more than three-quarters of the floods reaching the downstream Kuiseb River (with an infiltration rate of 8.5 mm/h) would not have reached similar distances in rivers with all other properties similar but with infiltration rates of 50 mm/h. The recharge volume in the downstream segment in the case of higher infiltration is mainly contributed by floods with magnitude ???93rd percentile, compared to floods in the 63rd percentile at an infiltration rate of 8.5 mm/h. ?? 2009 Elsevier B.V. All rights reserved.