Publications by Author: Gao, Xiaogang

2006
Morin E, Goodrich DC, Maddox RA, Gao X, Gupta HV, Sorooshian S. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Advances in Water Resources [Internet]. 2006;29 :843–860. Publisher's VersionAbstract
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.
2005
Morin E, Goodrich DC, Maddox RA, Gao X, Gupta HV, Sorooshian S. Rainfall modeling for integrating radar information into hydrological model. Atmospheric Science Letters [Internet]. 2005;6 :23–30. Publisher's VersionAbstract
A spatial rainfall model was applied to radar data of air mass thunderstorms to yield a rainstorm representation as a set of convective rain cells. The modeled rainfall was used as input into hydrological model, instead of the standard radar-grid data. This approach allows a comprehensive linkage between runoff responses and rainfall structures
2003
Morin E, Krajewski WF, Goodrich DC, Gao X, Sorooshian S. Estimating Rainfall Intensities from Weather Radar Data: The Scale-Dependency Problem. Journal of Hydrometeorology [Internet]. 2003;4 :782–797. Publisher's VersionAbstract
Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). Often, rain gauge rainfall observations are used in combination with the radar data to find the optimal parameters in the Z–R transformation equation. The scale dependency of the power-law Z–R parameters when estimated from radar reflectivity and rain gauge intensity data is explored herein. The multiplicative (a) and exponent (b) parameters are said to be “scale dependent” if applying the observed and calculated rainfall intensities to objective function at different scale results in different “optimal” parameters. Radar and gauge data were analyzed from convective storms over a midsize, semiarid, and well-equipped watershed. Using the root-mean-square difference (rmsd) objective function, a significant scale dependency was observed. Increased time- and space scales resulted in a considerable increase of the a parameter and decrease of the b parameter. Two sources of uncertainties related to scale dependency were examined: 1) observational uncertainties, which were studied both experimentally and with simplified models that allow representation of observation errors; and 2) model uncertainties. It was found that observational errors are mainly (but not only) associated with positive bias of the b parameter that is reduced with integration, at least for small scales. Model errors also result in scale dependency, but the trend is less systematic, as in the case of observational errors. It is concluded that identification of optimal scale for Z–R relationship determination requires further knowledge of reflectivity and rain-intensity error structure.