Publications by Year: 2014

Peleg N, Bartov M, Morin E. CMIP5-predicted climate shifts over the East Mediterranean: Implications for the transition region between Mediterranean and semi-arid climates. International Journal of Climatology [Internet]. 2014;2153 :2144–2153. Publisher's VersionAbstract
The effect of climate change on the Eastern Mediterranean (EM) region, a region that reflects a transition between Mediterranean and semi-arid climates, was examined. This transition region is affected by global changes such as the expansion of the Hadley cell, which leads to a poleward shift of the subtropical dry zone. The Hadley cell expansion forces the migration of jet streams and storm tracks poleward from their standard course, potentially increasing regional desertification. This article focuses on the northern coastline of Israel along the EM region where most wet synoptic systems (i.e. systems that may lead to precipitation) are generated. The current climate was compared to the predicted mid-21st century climate based on Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 scenarios using four Coupled Model Intercomparison Project Phase 5 (CMIP5) models. A warming of 1.1–2.6 °C was predicted for this region. The models predicted that rain in the region will become less frequent, with a reduction of 1.2–3.4% in 6-h intervals classified as wet synoptic systems and a 10–22% reduction in wet events. They further predicted that the maximum wet event duration in the mid-21st century would become shorter relative to the current climate, implying that extremely long wet systems will become less frequent. Three of the models predicted shrinking of the wet season length by up to 15%. All models predicted an increasing occurrence frequency of Active Red Sea Troughs (ARSTs) for the RCP8.5 scenario by up to 11% by the mid-21st century. For the RCP4.5 scenario, a similar increase of up to 6% was predicted by two of the models.
Saaroni H, Ziv B, Lempert J, Gazit Y, Morin E. Prolonged dry spells in the Levant region: Climatologic-synoptic analysis. International Journal of Climatology [Internet]. 2014;2236 :2223–2236. Publisher's VersionAbstract
Prolonged dry spells (PDSs) during the rainy season have severe environmental implications, including water shortage, damage to agriculture and increased potential for forest fires. This holds in particular for vulnerable regions, such as the Levant, already subjected to decrease in rainfall and lengthening of dry spells, in agreement with predictions of climatic models for the coming decades. This is the first comprehensive study which identifies atmospheric patterns responsible for PDS occurrence on thousands of kilometres scale. A total of 178 PDSs, of \textgreater7 days, were found within the 62 seasons studied. A subjective inspection of upper-level geopotential height (GPH), sea-level pressure (SLP) and lower-level temperature anomalies point at three types, each associated with a definite climatic regime. The ‘subtropical' type is associated with an expansion of the subtropical high over the majority of the Mediterranean, accompanied by northward migration of the Mediterranean cyclone track. The ‘baroclinic', the most frequent type, is induced by a pronounced stagnant ridge over the eastern Mediterranean, being a part of Rossby wave, accompanied by a pronounced trough/cut-off low over the western Mediterranean. The ‘polar' type results from intrusion of lower-level continental polar air associated with upper-level trough east of the Levant and blocking high over central Europe. Quantitative indices were derived for objective classification of the types, based on the climatic regimes defined subjectively, and the centers of action representing each. Composite maps for each type indicate substantial differences in the synoptic configuration and the factors explaining absence of rain. For the subtropical type, the dynamic factor of subsidence is dominant. For the polar, the thermodynamic factor of continental dry advection is dominant and for the baroclinic, both dynamic and thermodynamic factors are important. Classification of PDSs according to synoptic scenarios enables analysis of future changes in the occurrence and duration pattern of PDSs, using output of climate models.
Borga M, Morin E. Characteristics of Flash Flood Regimes in the Mediterranean Region. In: Diodato N, Bellocchi G Storminess and Environmental Change Climate Forcing and Responses in the Mediterranean Region. Dordrecht: Springer Netherlands ; 2014. pp. 65–76. Publisher's VersionAbstract
This work analyses the prominent characteristics of extreme storms and flash-flood regimes in two main areas of the Mediterranean region: the North-Western (comprising Spain, France and Italy) and South-Eastern region (Israel). The two areas are chosen to represent the two end members of variation in flash-flood regimes in the Mediterranean basin. Data from 99 events collected in the two areas (69 from the North-Western region and 30 from the South-Eastern region), for which occurrence date, catchment area and flood peak are available, were used to provide a detailed description the flash-flood seasonality patterns, the synoptic and mesoscale atmospheric controls, and flood envelope relationship. Results show that the flood envelope curve for the South-Eastern region exhibits a more pronounced decreasing with catchment size with respect to the curve of the North-Western region. The differences between the two relationships reflect variations in the fractional storm coverage of the basin and hydrological characteristics between the two regions. Seasonality analysis shows that the events in the North-Western region tend to occur between August and November, whereas those in the South-Eastern area tend to occur in the period between October and May, reflecting the relevant patterns in the synoptic conditions controlling the generation of intense precipitation events.
Rinat Y, Matmon A, Arnold M, Aumaître G, Bourlès D, Keddadouche K, Porat N, Morin E, Finkel RC. Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes. Quaternary Research (United States) [Internet]. 2014;81 :260–273. Publisher's VersionAbstract
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall ("inherited") TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6. ±. 0.8 and 4.7. ±. 0.7. ka. OSL ages of sediment accumulated behind the boulders range between 0.6. ±. 0.1 and 3.4. ±. 1.4. ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4-5. ka. © 2013 University of Washington.
Shamir E, Georgakakos KP, Peleg N, Morin E. Hydrologic Model Development for the Dalia-Taninim watersheds in Israel. [Internet]. 2014 :46. Publisher's Version
Morin E, Yakir H. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal [Internet]. 2014;59 :1353–1362. Publisher's VersionAbstract
Abstractt Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the...
Peleg N, Morin E. Stochastic convective rain-field simulation using a high-resolution synoptically conditioned weather generator (HiReS-WG). Water Resources Research [Internet]. 2014;50 :2124–2139. Publisher's VersionAbstract
A new stochastic high-resolution synoptically conditioned weather generator (HiReS-WG) appropriate for climate regimes with a substantial proportion of convective rainfall is presented. The simu- lated rain fields are of high spatial (0.53 0.5 km2) and temporal (5 min) resolution and can be used for most hydrological applications. The WG is composed of four modules: the synoptic generator, the motion vector generator, the convective rain cell generator, and the low-intensity rainfall generator. The HiReS-WG was applied to a study region on the northwestern Israeli coastline in the Eastern Mediterranean, for which 12 year weather radar and synoptic data were extensively analyzed to derive probability distributions of con- vective rain cells and other rainfall properties for different synoptic classifications; these distributions were used as input to the HiReS-WG. Simulated rainfall data for 300 years were evaluated for annual rain depth, season timing, wet-/dry-period durations, rain-intensity distributions, and spatial correlations. In general, the WG well represented the above properties compared to radar and rain-gauge observations from the studied region, with one limitation—an inability to reproduce the most extreme cases. The HiReS-WG is a good tool to study catchments' hydrological responses to variations in rainfall, especially small-size to medium-size catchments, and it can also be linked to climate models to force the prevailing synoptic conditions.