Publications by Year: 2015

Peleg N, Shamir E, Georgakakos KP, Morin E. A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: A case study of two medium-sized eastern Mediterranean catchments, Israel. Hydrology and Earth System Sciences [Internet]. 2015;19 :567–581. Publisher's VersionAbstract
A modeling framework is formulated and applied to assess the sensitivity of the hydrological regime of two catchments in a convective rainfall environment with respect to projected climate change. The study uses likely rainfall scenarios with high spatiotemporal resolution that are dependent on projected changes in the driving regional meteorological synoptic systems. The framework was applied to a case study in two medium-sized Mediterranean catchments in Israel, affected by convective rainfall, by combining the HiReS-WG rainfall generator and the SAC-SMA hydrological model. The projected climate change impact on the hydrological regime was examined for the RCP4.5 and RCP8.5 emission scenarios, comparing the historical (beginning of the 21st century) and future (mid-21st-century) periods from three general circulation model simulations available from CMIP5. Focusing on changes in the occurrence frequency of regional synoptic systems and their impact on rainfall and streamflow patterns, we find that the mean annual rainfall over the catchments is projected to be reduced by 15% (outer range 2–23%) and 18% (7–25%) for the RCP4.5 sand RCP8.5 emission scenarios, respectively. The mean annual streamflow volumes are projected to be reduced by 45% (10–60%) and 47% (16–66%). The average events' streamflow volumes for a given event rainfall depth are projected to be lower by a factor of 1.4–2.1. Moreover, the streamflow season in these ephemeral streams is projected to be shorter by 22% and 26–28% for the RCP4.5 and RCP8.5, respectively. The amplification in reduction of streamflow volumes relative to rainfall amounts is related to the projected reduction in soil moisture, as a result of fewer rainfall events and longer dry spells between rainfall events during the wet season. The dominant factors for the projected reduction in rainfall amount were the reduction in occurrence of wet synoptic systems and the shortening of the wet synoptic systems durations. Changes in the occurrence frequency of the two dominant types of the regional wet synoptic systems (active Red Sea trough and Mediterranean low) were found to have a minor impact on the total rainfall.
Seo D-J, Habib E, Andrieu H, Morin E. Hydrologic applications of weather radar. Journal of Hydrology [Internet]. 2015;531 :231–233. Publisher's Version
Marra F, Morin E. Use of radar QPE for the derivation of Intensity–Duration–Frequency curves in a range of climatic regimes. Journal of Hydrology [Internet]. 2015;531 :427–440. Publisher's VersionAbstract
Intensity–Duration–Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20min, 1h and 4h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.