Publications by Author: Ziv, B.

2016
Ziv B, Harats N, Morin E, Yair Y, Dayan U. Can severe rain events over the Mediterranean region be detected through simple numerical indices?. Natural Hazards [Internet]. 2016;83 (2) :1197–1212. Publisher's VersionAbstract

This work evaluates two numerical warning indicators of severe weather. These indicators, the MKI and RDI indices, were developed within the framework of the EU- funded FLASH project which studies flash flood events in the Mediterranean Basin. The MKI (Modified K-Index) is a modification of the K-Index, which expresses probability of lightning activity, and the RDI (Rain Dynamical Index) is the integrated upward moisture flux. The indices were tested on 59 episodes which occurred during nine rainstorms in Israel, Greece, Spain, Italy, and Cyprus. The data for calculation of the indices included rain cell identification derived from microwave radiometer imagery of polar orbiting NOAA satellites, rain RADAR data, and lightning activity from the international ZEUS detection system. Atmospheric data with 0.5? 9 0.5? spatial resolution and 6-h time res- olution were used for the calculation and the display of the two indices. The indices were tested by calculating the spatially correlating locations with high index values and actual locations of intense rain and intense lightning. The RDI detected both event types: rain and lightning, with a statistically significant success rate and a low rate of false results. The MKI was successful in indicating intense lightning activity, but the rate of correct indi- cations was not statistically significant and there was a high rate of false indications. The results suggest that the RDI computed with output of weather prediction models is a potentially good predictor of torrential rain and therefore can predict flash floods caused by such rain in the Mediterranean region.

2011
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751. Publisher's VersionAbstract
The FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
2007
Morin E, Harats N, Jacoby Y, Arbel S, Getker M, Arazi A, Grodek T, Ziv B, Dayan U. Studying the extremes: hydrometeorological investigation of a flood-causing rainstorm over Israel. Advances in Geosciences [Internet]. 2007;12 :107–114. Publisher's VersionAbstract
Analysis of extreme hydrometeorological events is important for characterizing and better understanding the meteorological conditions that can generate severe rainstorms and the consequent catastrophic flooding. According to several studies (e.g., Alpert et al., 2004; Wittenberg et al., 2007), the occurrence of such extreme events is increasing over the eastern Mediterranean although total rain amounts are generally decreasing. The current study presents an analysis of an extreme event utilizing different methodologies: (a) synoptic maps and high resolution satellite imagery for atmospheric condition analysis; (b) rainfall analysis by rain gauges data; (c) meteorological radar rainfall calibration and analysis; (d) field measurements for estimating maximum peak discharges; and, (e) high resolution aerial photographs together with field surveying for quantifying the geomorphic impacts. The unusual storm occurred over Israel between 30 March and 2 April, 2006. Heavy rainfall produced more than 100mm in some locations in only few hours and more than 200mm in the major core area. Extreme rain intensities with recurrence intervals of more than 100 years were found for durations of 1 h and more as well as for the daily rain depth values. In the most severely affected area,Wadi Ara, extreme flash floods caused damages and casualties. Specific peak discharges were as high as 10–30m3/s/km2 for catchments of the size of 1–10 km2, values larger than any recorded floods in similar climatic regions in Israel.
2001
Dayan U, Ziv B, Margalit A, Morin E, Sharon D. A severe autumn storm over the Middle-East: Synoptic and mesoscale convection analysis. Theoretical and Applied Climatology [Internet]. 2001;69 :103–122. Publisher's VersionAbstract
At times, a pronounced trough of low barometric pressure extends from equatorial Africa northward, over the Red Sea and the eastern Mediterranean countries, i.e., the Red Sea Trough. The associated weather is usually hot and dry, and consequently the atmosphere becomes conditionally unstable. In cases in which additional moisture is supplied and dynamic conditions become supportive, as the case analyzed here, intense thunderstorms occur, with extreme rain rates, hail and floods. The storm herein analyzed caused extensive damage both in casualties and property and evolved in two main consecutive phases: In the first a Mesoscale Convective System that moved from Sinai northward over Israel dominated, and in the second deep convection was organized mainly along a cold front. Data analysis indicates several synoptic-scale factors that had a supportive effect on the storm formation and intensification: Conditional instability established by the Red Sea trough, mid-level moisture transport from Northern Africa, and upper-level divergence imparted by both polar and subtropical jet streams over the Middle-East. Mesoscale features were further investigated by means of a hydro-meteorological observational analysis with high spatio-temporal resolution using raingauge and radar data, and satellite imagery. It is shown that local factors, particularly topographic effects, play a major role in the evolution, intensity and spatial organization of the convective activity. Our findings support results of a numerical study of another autumn rainstorm associated with the Red Sea trough. In the present case we identify an additional contributing factor, i.e., a mid-latitude upper-level trough that further intensified the storm as it was approaching the Middle-East.