2011
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Price C, Yair Y, Mugnai A, Lagouvardos K, Llasat MC, Michaelides S, Dayan U, Dietrich S, Di Paola FD, Galanti E, et al. Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics [Internet]. 2011;32 :733–751.
Publisher's VersionAbstractThe FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website
http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. ?? 2011 Elsevier Ltd.
Gabella M, Morin E, Notarpietro R.
Using TRMM spaceborne radar as a reference for compensating ground-based radar range degradation: Methodology verification based on rain gauges in Israel. Journal of Geophysical Research [Internet]. 2011;116 :D02114.
Publisher's VersionAbstractWhile intense scientific efforts have focused on radar precipitation estimation in temperate climatic regimes, relatively few studies have examined dry climatic regions. This paper examines rain depth estimation for a 19 day rainfall period in Israel, where the gauge spatial distribution is particularly nonhomogeneous. This fact exacerbates the main drawback of rain gauge observations, which is undersampling. Meteorological ground‐ based radar (GR) can supplement the desired information on precipitation distribution. However, especially in a complex orographic region, radar scientists are faced with beam broadening with distance, nonhomogeneous beam filling, and partial‐beam occultation, together with changes in the vertical reflectivity profile. This paper presents an improvement of GR precipitation estimates thanks to a range adjustment based on spaceborne meteorological radar. In the past, the Tropical Rainfall Measuring Mission (TRMM) satellite radar was used for checking the GR mean field bias around the world. To our knowledge, however, it is the first time that GR‐derived cumulative rainfall amounts show a better agreement with gauges, thanks to the mean field bias and range‐ dependent compensation derived using the well‐calibrated Ku band TRMM radar as a reference. The average bias improves from +1.0 dB to −0.3 dB; more interesting and difficult to obtain is a reduction of the dispersion of the error. Using TRMM‐based range compensation, the scatter decreases from 2.21 dB to 1.93 dB. We conclude that it is well worth trying to compensate for the GR range degradation.
Gabella M, Morin E, Notarpietro R.
Using TRMM spaceborne radar as a reference for compensating ground-based radar range degradation: Methodology verification based on rain gauges in Israel. Journal of Geophysical Research [Internet]. 2011;116 :D02114.
Publisher's VersionAbstractWhile intense scientific efforts have focused on radar precipitation estimation in temperate climatic regimes, relatively few studies have examined dry climatic regions. This paper examines rain depth estimation for a 19 day rainfall period in Israel, where the gauge spatial distribution is particularly nonhomogeneous. This fact exacerbates the main drawback of rain gauge observations, which is undersampling. Meteorological ground‐ based radar (GR) can supplement the desired information on precipitation distribution. However, especially in a complex orographic region, radar scientists are faced with beam broadening with distance, nonhomogeneous beam filling, and partial‐beam occultation, together with changes in the vertical reflectivity profile. This paper presents an improvement of GR precipitation estimates thanks to a range adjustment based on spaceborne meteorological radar. In the past, the Tropical Rainfall Measuring Mission (TRMM) satellite radar was used for checking the GR mean field bias around the world. To our knowledge, however, it is the first time that GR‐derived cumulative rainfall amounts show a better agreement with gauges, thanks to the mean field bias and range‐ dependent compensation derived using the well‐calibrated Ku band TRMM radar as a reference. The average bias improves from +1.0 dB to −0.3 dB; more interesting and difficult to obtain is a reduction of the dispersion of the error. Using TRMM‐based range compensation, the scatter decreases from 2.21 dB to 1.93 dB. We conclude that it is well worth trying to compensate for the GR range degradation.
Gabella M, Morin E, Notarpietro R.
Using TRMM spaceborne radar as a reference for compensating ground-based radar range degradation: Methodology verification based on rain gauges in Israel. Journal of Geophysical Research [Internet]. 2011;116 :D02114.
Publisher's VersionAbstractWhile intense scientific efforts have focused on radar precipitation estimation in temperate climatic regimes, relatively few studies have examined dry climatic regions. This paper examines rain depth estimation for a 19 day rainfall period in Israel, where the gauge spatial distribution is particularly nonhomogeneous. This fact exacerbates the main drawback of rain gauge observations, which is undersampling. Meteorological ground‐ based radar (GR) can supplement the desired information on precipitation distribution. However, especially in a complex orographic region, radar scientists are faced with beam broadening with distance, nonhomogeneous beam filling, and partial‐beam occultation, together with changes in the vertical reflectivity profile. This paper presents an improvement of GR precipitation estimates thanks to a range adjustment based on spaceborne meteorological radar. In the past, the Tropical Rainfall Measuring Mission (TRMM) satellite radar was used for checking the GR mean field bias around the world. To our knowledge, however, it is the first time that GR‐derived cumulative rainfall amounts show a better agreement with gauges, thanks to the mean field bias and range‐ dependent compensation derived using the well‐calibrated Ku band TRMM radar as a reference. The average bias improves from +1.0 dB to −0.3 dB; more interesting and difficult to obtain is a reduction of the dispersion of the error. Using TRMM‐based range compensation, the scatter decreases from 2.21 dB to 1.93 dB. We conclude that it is well worth trying to compensate for the GR range degradation.
Shohami D, Dayan U, Morin E.
Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. Journal of Geophysical Research Atmospheres [Internet]. 2011;116 :1–12.
Publisher's VersionAbstractThe climate of the eastern Mediterranean (EM), at the transition zone between the Mediterranean climate and the semi‐arid/arid climate, has been studied for a 39‐year period to determine whether climate changes have taken place. A thorough trend analysis using the nonparametric Mann‐Kendall test with Sen's slope estimator has been applied to ground station measurements, atmospheric reanalysis data, synoptic classification data and global data sets for the years 1964–2003. In addition, changes in atmospheric regional patterns between the first and last twenty years were determined by visual comparisons of their composite mean. The main findings of the analysis are: 1) changes of atmospheric conditions during summer and the transitional seasons (mainly autumn) support a warmer climate over the EM and this change is already statistically evident in surface temperatures having exhibited positive trends of 0.2–1°C/decade; 2) changes of atmospheric conditions during winter and the transitional seasons support drier conditions due to reduction in cyclogenesis and specific humidity over the EM, but this change is not yet statistically evident in surface station rain data, presumably because of the high natural precipitation variance masking such a change. The overall conclusion of this study is that the EM region is under climate change leading to warmer and drier conditions.
Shohami D, Dayan U, Morin E.
Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. Journal of Geophysical Research Atmospheres [Internet]. 2011;116 :1–12.
Publisher's VersionAbstractThe climate of the eastern Mediterranean (EM), at the transition zone between the Mediterranean climate and the semi‐arid/arid climate, has been studied for a 39‐year period to determine whether climate changes have taken place. A thorough trend analysis using the nonparametric Mann‐Kendall test with Sen's slope estimator has been applied to ground station measurements, atmospheric reanalysis data, synoptic classification data and global data sets for the years 1964–2003. In addition, changes in atmospheric regional patterns between the first and last twenty years were determined by visual comparisons of their composite mean. The main findings of the analysis are: 1) changes of atmospheric conditions during summer and the transitional seasons (mainly autumn) support a warmer climate over the EM and this change is already statistically evident in surface temperatures having exhibited positive trends of 0.2–1°C/decade; 2) changes of atmospheric conditions during winter and the transitional seasons support drier conditions due to reduction in cyclogenesis and specific humidity over the EM, but this change is not yet statistically evident in surface station rain data, presumably because of the high natural precipitation variance masking such a change. The overall conclusion of this study is that the EM region is under climate change leading to warmer and drier conditions.
Shohami D, Dayan U, Morin E.
Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. Journal of Geophysical Research Atmospheres [Internet]. 2011;116 :1–12.
Publisher's VersionAbstractThe climate of the eastern Mediterranean (EM), at the transition zone between the Mediterranean climate and the semi‐arid/arid climate, has been studied for a 39‐year period to determine whether climate changes have taken place. A thorough trend analysis using the nonparametric Mann‐Kendall test with Sen's slope estimator has been applied to ground station measurements, atmospheric reanalysis data, synoptic classification data and global data sets for the years 1964–2003. In addition, changes in atmospheric regional patterns between the first and last twenty years were determined by visual comparisons of their composite mean. The main findings of the analysis are: 1) changes of atmospheric conditions during summer and the transitional seasons (mainly autumn) support a warmer climate over the EM and this change is already statistically evident in surface temperatures having exhibited positive trends of 0.2–1°C/decade; 2) changes of atmospheric conditions during winter and the transitional seasons support drier conditions due to reduction in cyclogenesis and specific humidity over the EM, but this change is not yet statistically evident in surface station rain data, presumably because of the high natural precipitation variance masking such a change. The overall conclusion of this study is that the EM region is under climate change leading to warmer and drier conditions.
2010
Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Del Carmen Llasat M.
Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research Atmospheres [Internet]. 2010;115 :1–13.
Publisher's VersionAbstractA new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0°C and −20°C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Del Carmen Llasat M.
Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research Atmospheres [Internet]. 2010;115 :1–13.
Publisher's VersionAbstractA new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0°C and −20°C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Del Carmen Llasat M.
Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research Atmospheres [Internet]. 2010;115 :1–13.
Publisher's VersionAbstractA new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0°C and −20°C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Del Carmen Llasat M.
Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research Atmospheres [Internet]. 2010;115 :1–13.
Publisher's VersionAbstractA new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0°C and −20°C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.