Publications

2020
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen TJ, Morin E, Enzel Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters [Internet]. 2020;n/a (n/a) :e2020GL087367. Publisher's VersionAbstract
Abstract Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method to derive the bathymetry of such lakes using the relation between water occurrence, during \textgreater30-yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we map bathymetries with \~0.3 m error. This method complements other remotely sensed, bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on publically accessible global data sets.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Grodek T, Morin E, Helman D, Lensky I, Dahan O, Seely M, Benito G, Enzel Y. Eco-hydrology and geomorphology of the largest floods along the hyperarid Kuiseb River, Namibia. Journal of Hydrology [Internet]. 2020;582 :124450. Publisher's VersionAbstract
Flood-fed aquifers along the sandy lower reach of the Kuiseb River sustain a 130-km-long green belt of lush oases across the hyperarid Namib desert. This oasis is a year-round source for water creating dense-tall woodland along the narrow corridor of the ephemeral river valley, which, in turn, supports human activity and fauna including during the long dry austral winters and multi-year droughts. Occasional floods, originating at the river's wetter headwaters, travel ∼280 km downstream, before recharging these aquifers. We analyzed the flood-aquifer-vegetation dynamics at-a-site and along the river, determining the relative impact of floods with diverse magnitude and frequency on downstream reaches. We find that flood discharge that feeds the alluvial aquifers also affects vegetation dynamics along the river. The downstream aquifers are fed only by the largest floods that allow the infrequent germination of plants; mean annual recharge volume is too low to support the aquifers level. These short-term vegetation cycles of green-up and then fast senescence in-between floods are easily detected by satellite-derived vegetation index. This index identifies historical floods and their magnitudes in arid and hyperarid regions; specifically, it determines occurrences of large floods in headwater-fed, ephemeral Namib streams as well as in other hyperarid regions. Our study reveals the importance of flood properties on the oasis life cycle, emphasizing the impact of drought and wet years on the Namib's riparian vegetation.
Zoccatelli D, Marra F, Smith J, Goodrich D, Unkrich C, Rosensaft M, Morin E. Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology [Internet]. 2020 :124879. Publisher's VersionAbstract
The performances of hydrological models in arid areas are significantly lower than other climates. The reasons are numerous, from the scales involved, to specific processes and the lack of adequate measurements. Effective parameters have been often observed to change between runoff events, limiting the predictive capacity of the models. We look at the problems that can be found in an operational setting and present an analysis to improve the understanding of the errors. Our method characterizes the conditions where the model fails systematically, and the conditions where the parameterization holds between floods. We applied KINEROS2 to 24 years of radar rainfall and streamflow data in 6 arid catchments. A GLUE probabilistic framework is used to characterize model performance, and a method is developed to identify floods with similar calibration. The analysis shows that uninformative conditions are difficult to generalize. A basin-specific analysis can help to identify conditions where the model fails and exclude them from calibration. Despite the large uncertainties, similar catchments display groups of floods with similar parameterization. In some basin we find that it is important to quantify antecedent moisture conditions. Hydrological models show some consistency within limited conditions. These conditions, however, depend on the errors involved, and are site-specific. There is some potential for parameter transfer, but proximity alone might not be enough, and other factors such as mean annual rainfall or storm type, should be taken into account.
Zoccatelli D, Marra F, Smith J, Goodrich D, Unkrich C, Rosensaft M, Morin E. Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology [Internet]. 2020 :124879. Publisher's VersionAbstract
The performances of hydrological models in arid areas are significantly lower than other climates. The reasons are numerous, from the scales involved, to specific processes and the lack of adequate measurements. Effective parameters have been often observed to change between runoff events, limiting the predictive capacity of the models. We look at the problems that can be found in an operational setting and present an analysis to improve the understanding of the errors. Our method characterizes the conditions where the model fails systematically, and the conditions where the parameterization holds between floods. We applied KINEROS2 to 24 years of radar rainfall and streamflow data in 6 arid catchments. A GLUE probabilistic framework is used to characterize model performance, and a method is developed to identify floods with similar calibration. The analysis shows that uninformative conditions are difficult to generalize. A basin-specific analysis can help to identify conditions where the model fails and exclude them from calibration. Despite the large uncertainties, similar catchments display groups of floods with similar parameterization. In some basin we find that it is important to quantify antecedent moisture conditions. Hydrological models show some consistency within limited conditions. These conditions, however, depend on the errors involved, and are site-specific. There is some potential for parameter transfer, but proximity alone might not be enough, and other factors such as mean annual rainfall or storm type, should be taken into account.
Zoccatelli D, Marra F, Smith J, Goodrich D, Unkrich C, Rosensaft M, Morin E. Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology [Internet]. 2020 :124879. Publisher's VersionAbstract
The performances of hydrological models in arid areas are significantly lower than other climates. The reasons are numerous, from the scales involved, to specific processes and the lack of adequate measurements. Effective parameters have been often observed to change between runoff events, limiting the predictive capacity of the models. We look at the problems that can be found in an operational setting and present an analysis to improve the understanding of the errors. Our method characterizes the conditions where the model fails systematically, and the conditions where the parameterization holds between floods. We applied KINEROS2 to 24 years of radar rainfall and streamflow data in 6 arid catchments. A GLUE probabilistic framework is used to characterize model performance, and a method is developed to identify floods with similar calibration. The analysis shows that uninformative conditions are difficult to generalize. A basin-specific analysis can help to identify conditions where the model fails and exclude them from calibration. Despite the large uncertainties, similar catchments display groups of floods with similar parameterization. In some basin we find that it is important to quantify antecedent moisture conditions. Hydrological models show some consistency within limited conditions. These conditions, however, depend on the errors involved, and are site-specific. There is some potential for parameter transfer, but proximity alone might not be enough, and other factors such as mean annual rainfall or storm type, should be taken into account.
Zoccatelli D, Marra F, Smith J, Goodrich D, Unkrich C, Rosensaft M, Morin E. Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology [Internet]. 2020 :124879. Publisher's VersionAbstract
The performances of hydrological models in arid areas are significantly lower than other climates. The reasons are numerous, from the scales involved, to specific processes and the lack of adequate measurements. Effective parameters have been often observed to change between runoff events, limiting the predictive capacity of the models. We look at the problems that can be found in an operational setting and present an analysis to improve the understanding of the errors. Our method characterizes the conditions where the model fails systematically, and the conditions where the parameterization holds between floods. We applied KINEROS2 to 24 years of radar rainfall and streamflow data in 6 arid catchments. A GLUE probabilistic framework is used to characterize model performance, and a method is developed to identify floods with similar calibration. The analysis shows that uninformative conditions are difficult to generalize. A basin-specific analysis can help to identify conditions where the model fails and exclude them from calibration. Despite the large uncertainties, similar catchments display groups of floods with similar parameterization. In some basin we find that it is important to quantify antecedent moisture conditions. Hydrological models show some consistency within limited conditions. These conditions, however, depend on the errors involved, and are site-specific. There is some potential for parameter transfer, but proximity alone might not be enough, and other factors such as mean annual rainfall or storm type, should be taken into account.
Zoccatelli D, Marra F, Smith J, Goodrich D, Unkrich C, Rosensaft M, Morin E. Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology [Internet]. 2020 :124879. Publisher's VersionAbstract
The performances of hydrological models in arid areas are significantly lower than other climates. The reasons are numerous, from the scales involved, to specific processes and the lack of adequate measurements. Effective parameters have been often observed to change between runoff events, limiting the predictive capacity of the models. We look at the problems that can be found in an operational setting and present an analysis to improve the understanding of the errors. Our method characterizes the conditions where the model fails systematically, and the conditions where the parameterization holds between floods. We applied KINEROS2 to 24 years of radar rainfall and streamflow data in 6 arid catchments. A GLUE probabilistic framework is used to characterize model performance, and a method is developed to identify floods with similar calibration. The analysis shows that uninformative conditions are difficult to generalize. A basin-specific analysis can help to identify conditions where the model fails and exclude them from calibration. Despite the large uncertainties, similar catchments display groups of floods with similar parameterization. In some basin we find that it is important to quantify antecedent moisture conditions. Hydrological models show some consistency within limited conditions. These conditions, however, depend on the errors involved, and are site-specific. There is some potential for parameter transfer, but proximity alone might not be enough, and other factors such as mean annual rainfall or storm type, should be taken into account.

Pages