Publications by Author: Armon, Moshe

2023
Shmilovitz Y, Marra F, Enzel Y, Morin E, Armon M, Matmon A, Mushkin A, Levi Y, Khain P, Rossi MW, et al. The Impact of Extreme Rainstorms on Escarpment Morphology in Arid Areas: Insights From the Central Negev Desert. Journal of Geophysical Research: Earth Surface [Internet]. 2023;128 :e2023JF007093. Publisher's VersionAbstract
The impact of climate on topography, which is a theme in landscape evolution studies, has been demonstrated, mostly, at mountain range scales and across climate zones. However, in drylands, spatiotemporal discontinuities of rainfall and the crucial role of extreme rainstorms raise questions and challenges in identifying climate properties that govern surface processes. Here, we combine methods to examine hyperarid escarpment sensitivity to storm-scale forcing. Using a high-resolution DEM and field measurements, we analyzed the topography of a 40-km-long escarpment in the Negev desert (Israel). We also used rainfall intensity data from a convection-permitting numerical weather model for storm-scale statistical analysis. We conducted hydrological simulations of synthetic rainstorms, revealing the frequency of sediment mobilization along the sub-cliff slopes. Results show that cliff gradients along the hyperarid escarpment increase systematically from the wetter (90 mm yr−1) southwestern to the drier (45 mm yr−1) northeastern sides. Also, sub-cliff slopes at the southwestern study site are longer and associated with milder gradients and coarser sediments. Storm-scale statistical analysis reveals a trend of increasing extreme (>10 years return-period) intensities toward the northeast site, opposite to the trend in mean annual rainfall. Hydrological simulations based on these statistics indicate a higher frequency of sediment mobilization in the northeast, which can explain the pronounced topographic differences between the sites. The variations in landscape and rainstorm properties across a relatively short distance highlight the sensitivity of arid landforms to extreme events.
Shmilovitz Y, Enzel Y, Morin E, Armon M, Matmon A, Mushkin A, Pederson J, Haviv I. Aspect-dependent bedrock weathering, cliff retreat, and cliff morphology in a hyperarid environment. GSA Bulletin [Internet]. 2023;135 :1955-1966. Publisher's VersionAbstract
Deciphering aspect-related hillslope asymmetry can enhance our understanding of the influence of climate on Earth’s surface morphology and the linkage between topographic morphology and erosion processes. Although hillslope asymmetry is documented worldwide, the role of microclimatic factors in the evolution of dryland cliffs has received little attention. Here, we address this gap by quantifying aspect-dependent bedrock weathering, slope-rill morphology, and subcliff clast transport rates in the hyperarid Negev desert, Israel, based on light detection and ranging (LiDAR)-derived topography, clast-size measurements, and cosmogenic 10Be concentrations. Cliff retreat rates were evaluated using extrapolated profiles from dated talus flatirons and 10Be measurements from the cliff face and sub-cliff sediments. We document systematic, aspect-dependent patterns of south-facing slopes being less steep and finer-grained relative to east and north-facing aspects. In addition, cliff retreat and clast transport rates on slopes of the south-facing aspect are faster compared to the other aspects. Our data demonstrate that bedrock weathering of the cliff face and the corresponding grain size of cliff-derived clasts delivered to the slopes constitute a first-order control on cliff retreat and sediment transport rates. We demonstrate that the morphology of the cliff and the pattern of bedrock weathering co-vary with the solar radiation flux and hence that cliff evolution in hyperarid regions is modulated by aspectdependent solar radiation. These results help to better understand interactions between climate and dryland surface processes.
2022
Armon M, Marra F, Enzel Y, Rostkier‐Edelstein D, Garfinkel CI, Adam O, Dayan U, Morin E. Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earth's Future. 2022;10 (1) :1–19.Abstract
Heavy precipitation events (HPEs) can lead to deadly and costly natural disasters and are critical to the hydrological budget in regions where rainfall variability is high and water resources depend on individual storms. Thus, reliable projections of such events in the future are needed. To provide high-resolution projections under the RCP8.5 scenario for HPEs at the end of the 21 st century, and to understand the changes in sub-hourly to daily rainfall patterns, weather research and forecasting (WRF) model simulations of 41 historic HPEs in the eastern Mediterranean are compared with "pseudo global warming" simulations of the same events. This paper presents the changes in rainfall patterns in future storms, decomposed into storms' mean conditional rain rate, duration, and area. A major decrease in rainfall accumulation (-30% averaged across events) is found throughout future HPEs. This decrease results from a substantial reduction of the rain area of storms (-40%) and occurs despite an increase in the mean conditional rain intensity (+15%). The duration of the HPEs decreases (-9%) in future simulations. Regionally maximal 10-min rain rates increase (+22%), whereas over most of the region, long-duration rain rates decrease. The consistency of results across events, driven by varying synoptic conditions, suggests that these changes have low sensitivity to the specific synoptic evolution during the events. Future HPEs in the eastern Mediterranean will therefore likely be drier and more spatiotemporally concentrated, with substantial implications on hydrological outcomes of storms. Plain Language Summary Heavy precipitation events are large storms that can recharge freshwater reservoirs, but can also lead to hazardous outcomes such as flash floods. Therefore, understanding the impacts of climate change on such storms is critical. Here, a weather model similar to those used in weather forecasts is used to simulate heavy precipitation events in the eastern Mediterranean. A large collection of storms is simulated in pairs: (1) historic storms, selected for their high impact, and (2) the same storms placed in a global warming scenario projected for the end of the 21 st century. Using these simulations we ask how present-day storms would look like were they to occur at the warmer end of the 21 st century. The future storms are found to produce much less rainfall compared to their historic counterparts. This decrease in rainfall is attributed mainly to the reduction in the area covered by storms' rainfall, and happens despite increasing rainfall intensities. These results suggest that the region will be drier in the future with larger dry areas during storms; however, over short durations, it would rain more intensely over contracted areas-increasing local hazards associated with heavy precipitation events.
2021
Ben Dor Y, Marra F, Armon M, Enzel Y, Morin E. Hydroclimatic variability of opposing late Pleistocene climates in the Levant revealed by deep Dead Sea sediments. Climate of The Past Discussions. 2021 :1–31.
Rinat Y, Marra F, Armon M, Metzger A, Levi Y, Khain P, Vadislavsky E, Rosensaft M, Morin E. Hydrometeorological analysis and forecasting of a 3-d flash-flood-triggering desert rainstorm. Natural Hazards and Earth System Sciences [Internet]. 2021;21 (3) :917–939. Publisher's Version
Marra F, Armon M, Borga M, Morin E. Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales. Geophysical Research Letters [Internet]. 2021;48 (5) :e2020GL091498. Publisher's VersionAbstract
Abstract Orographic impact on extreme subdaily precipitation is critical for risk management but remains insufficiently understood due to complicated atmosphere-orography interactions and large uncertainties. We investigate the problem adopting a framework able to reduce uncertainties and isolate the systematic interaction of Mediterranean cyclones with a regular orographic barrier. The average decrease with elevation reported for hourly extremes is found enhanced at subhourly durations. Tail heaviness of 10-min intensities is negligibly affected by orography, suggesting self-similarity of the distributions at the convective scale. Orography decreases the tail heaviness at longer durations, with a maximum impact around hourly scales. These observations are explained by an orographically induced redistribution of precipitation toward stratiform-like processes, and by the succession of convective cores in multihour extremes. Our results imply a breaking of scale-invariance at subhourly durations, with important implications for natural hazards management in mountainous areas.
Marra F, Armon M, Adam O, Zoccatelli D, Gazal O, Garfinkel CI, Rostkier-Edelstein D, Dayan U, Enzel Y, Morin E. Toward Narrowing Uncertainty in Future Projections of Local Extreme Precipitation. Geophysical Research Letters [Internet]. 2021;48 (5) :e2020GL091823. Publisher's VersionAbstract
Abstract Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.
2020
Armon M, Marra F, Enzel Y, Rostkier-Edelstein D, Morin E. Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model. Hydrology and Earth System Sciences. 2020;24 (3) :1227–1249.Abstract
Heavy precipitation events (HPEs) can lead to natural hazards (e.g. floods and debris flows) and contribute to water resources. Spatiotemporal rainfall patterns govern the hydrological, geomorphological, and societal effects of HPEs. Thus, a correct characterisation and prediction of rainfall patterns is crucial for coping with these events. Information from rain gauges is generally limited due to the sparseness of the networks, especially in the presence of sharp climatic gradients. Forecasting HPEs depends on the ability of weather models to generate credible rainfall patterns. This paper characterises rainfall patterns during HPEs based on high-resolution weather radar data and evaluates the performance of a high-resolution, convection-permitting Weather Research and Forecasting (WRF) model in simulating these patterns. We identified 41 HPEs in the eastern Mediterranean from a 24-year radar record using local thresholds based on quantiles for different durations, classified these events into two synoptic systems, and ran model simulations for them. For most durations, HPEs near the coastline were characterised by the highest rain intensities; however, for short durations, the highest rain intensities were found for the inland desert. During the rainy season, the rain field's centre of mass progresses from the sea inland. Rainfall during HPEs is highly localised in both space (less than a 10 km decorrelation distance) and time (less than 5 min). WRF model simulations were accurate in generating the structure and location of the rain fields in 39 out of 41 HPEs. However, they showed a positive bias relative to the radar estimates and exhibited errors in the spatial location of the heaviest precipitation. Our results indicate that convection-permitting model outputs can provide reliable climatological analyses of heavy precipitation patterns; conversely, flood forecasting requires the use of ensemble simulations to overcome the spatial location errors.
2019
Zoccatelli D, Marra F, Armon M, Rinat Y, Smith JA, Morin E. Contrasting rainfall-runoff characteristics of floods in Desert and Mediterranean basins. Hydrology and Earth System Sciences Discussions. 2019;12 :2665–2678.Abstract
Abstract. Catchment scale hydrological studies on drylands are lacking because of the scarcity of consistent data: observations are often available at the plot scale, but their relevance for the catchment scale remains unclear. A database of 24 years of stream gauge discharge and homogeneous high-resolution radar data over the eastern Mediterranean allows to describe the properties of moderate floods over catchments spanning from Desert to Mediterranean climates. Comparing two climatic regions, Desert and Mediterranean, we are able to better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unit peak discharges and runoff coefficients are comparable. In Mediterranean areas rain depth and antecedent conditions are the most important properties to shape flood response. In Deserts, instead, storm core properties display a strong correlation with unit peak discharge and, to a less extent, with runoff coefficient. In this region, an inverse correlation with mean catchment annual precipitation suggests also a strong influence of local surface properties. Preliminary analyses suggest that floods in catchments with wet headwater and dry lower section are more similar to desert catchments, with a strong influence of storm core properties on runoff generation.
Armon M, Morin E, Enzel Y. Overview of modern atmospheric patterns controlling rainfall and floods into the Dead Sea: Implications for the lake's sedimentology and paleohydrology. Quaternary Science Reviews [Internet]. 2019;216 :58–73. Publisher's VersionAbstract
The Dead Sea sedimentary fill is the basis for interpreting limnological conditions and regional paleo- hydrology. Such interpretations require an understanding of present-day hydroclimatology to reveal the relative impact of different atmospheric circulation patterns on water and sediment delivery to the Dead Sea. Here we address the most important meteorological conditions governing regional and local rain- storm occurrences, with different discharge characteristics. These meteorological controls over the Dead Sea watershed offer insights into past hydrometeorological processes that could have governed the Dead Sea water budget, seasonal and annual flows, floods, and the resultant sedimentology. Rainfall is typically associated with synoptic-scale circulation patterns forced by an upper-level trough that include Medi- terranean cyclones (MCs), active Red Sea troughs (ARSTs), and active subtropical jets (STJs), although other rainstorms and sub-synoptic processes also affect the region. We point to their relative importance in inflow volume, peak discharges, and delivery of sediments from the various environments of the basin. MCs control the annual water amount discharging into the Dead Sea. A change in their frequency, in- tensity, or latitude can substantially alter the lake water balance. A change in frequency or intensity of ARSTs and STJs affects extreme flood and sediment discharge. Floods reach the lake through (a) the Mediterranean-climate-controlled Lower Jordan River, (b) desert-climate-controlled Nahal HaArava, and (c) the arid wadies draining directly into the Dead Sea, some with wetter headwaters. Floods in the wetter parts of the watershed are mainly controlled by MCs, and characterized by larger frequency, volume, and duration, but lower peak discharges and possibly sediment delivery, than floods in the desert parts, which can be produced by the three synoptic types. ARSTs contribute to heavy rainfall, typically of a spotty nature, in the desert parts of the watershed. STJs are currently rare, but their rainfall accumulation may be greater than the annual mean over a broad area in the southern dry Dead Sea watershed. This article presents a review of recent studies, which is extended with new analyses of meteorological, rainfall and flood data, underlining the importance of the Lower Jordan River in sup- plying water volume to the Dead Sea, as compared to the high-discharge, low-volume floods of the arid part of the watershed. Our analyses will help interpret paleoenvironmental conditions in the Dead Sea sedimentary record, and cope with the region's changing climate.
Marra F, Zoccatelli D, Armon M, Morin E. A simplified MEV formulation to model extremes emerging from multiple nonstationary underlying processes. Advances in Water Resources [Internet]. 2019;127 (March) :280–290. Publisher's VersionAbstract

This paper presents a Simplified Metastatistical Extreme Value formulation (SMEV) able to model hydro- meteorological extremes emerging from multiple underlying processes. The formulation explicitly includes the average intensity and probability of occurrence of the processes allowing to parsimoniously model changes in these quantities to quantify changes in the probability of occurrence of extremes. SMEV allows (a) frequency analyses of extremes emerging from multiple underlying processes and (b) computationally efficient analyses of the sensitivity of extreme quantiles to changes in the characteristics of the underlying processes; moreover, (c) it provides a robust framework for explanatory models, nonstationary frequency analyses, and climate projections. The methodology is applied to daily precipitation data from long recording stations in the eastern Mediter-
ranean, using Weibull distributions to model daily precipitation amounts generated by two classes of synoptic systems. At-site application of SMEV provides spatially consistent estimates of extreme quantiles, in line with regional GEV estimates and generally characterized by reduced uncertainties. The sensitivity of extreme quan- tiles to changes and uncertainty in the intensity and yearly occurrences of events generated by different synoptic classes is examined, and an application of SMEV for the projection of future extremes is provided.

2018
Ahlborn M, Armon M, Ben Dor Y, Neugebauer I, Schwab MJ, Tjallingii R, Shoqeir JH, Morin E, Enzel Y, Brauer A. Increased frequency of torrential rainstorms during a regional late Holocene eastern Mediterranean drought. Quaternary Research. 2018;89 (2) :425–431.Abstract
Identifying climates favoring extreme weather phenomena is a primary aim of paleoclimate and paleohydrological research. Here, we present a well-dated, late Holocene Dead Sea sediment record of debris flows covering 3.3 to 1.9 cal ka BP. Twenty-three graded layers deposited in shallow waters near the western Dead Sea shore were identified by microfacies analysis. These layers represent distal subaquatic deposits of debris flows triggered by torrential rainstorms over the adjacent western Dead Sea escarpment. Modern debris flows on this escarpment are induced by rare rainstorms with intensities exceeding \textgreater30mm h−1 for at least one hour and originate primarily from the Active Red Sea Trough synoptic pattern. The observed late Holocene clustering of such debris flows during a regional drought indicates an increased influence of Active Red Sea Troughs resulting from a shift in synoptic atmospheric circulation patterns. This shift likely decreased the passages of eastern Mediterranean cyclones, leading to drier conditions, but favored rainstorms triggered by the Active Red Sea Trough. This is in accord with present-day meteorological data showing an increased frequency of torrential rainstorms in regions of drier climate. Hence, this study provides conclusive evidence for a shift in synoptic atmospheric circulation patterns during a late Holocene drought.
Ben Dor Y, Armon M, Ahlborn M, Morin E, Erel Y, Brauer A, Schwab MJ, Tjallingii R, Enzel Y. Changing flood frequencies under opposing late Pleistocene eastern Mediterranean climates. Scientific Reports [Internet]. 2018;8 (1) :8445. Publisher's VersionAbstract
Floods comprise a dominant hydroclimatic phenomenon in aridlands with significant implications for humans, infrastructure, and landscape evolution worldwide. The study of short-term hydroclimatic variability, such as floods, and its forecasting for episodes of changing climate therefore poses a dominant challenge for the scientific community, and predominantly relies on modeling. Testing the capabilities of climate models to properly describe past and forecast future short-term hydroclimatic phenomena such as floods requires verification against suitable geological archives. However, determining flood frequency during changing climate is rarely achieved, because modern and paleoflood records, especially in arid regions, are often too short or discontinuous. Thus, coeval independent climate reconstructions and paleoflood records are required to further understand the impact of climate change on flood generation. Dead Sea lake levels reflect the mean centennial-millennial hydrological budget in the eastern Mediterranean. In contrast, floods in the large watersheds draining directly into the Dead Sea, are linked to short-term synoptic circulation patterns reflecting hydroclimatic variability. These two very different records are combined in this study to resolve flood frequency during opposing mean climates. Two 700-year-long, seasonally-resolved flood time series constructed from late Pleistocene Dead Sea varved sediments, coeval with significant Dead Sea lake level variations are reported. These series demonstrate that episodes of rising lake levels are characterized by higher frequency of floods, shorter intervals between years of multiple floods, and asignificantly larger number of years that experienced multiple floods. In addition, floods cluster into intervals of intense flooding, characterized by 75% and 20% increased frequency above their respective background frequencies during rising and falling lake-levels, respectively. Mean centennial precipitation in the eastern Mediterranean is therefore coupled with drastic changes in flood frequencies. These drastic changes in flood frequencies are linked to changes in the track, depth, and frequency of mid-latitude eastern Mediterranean cyclones, determining mean climatology resulting in wetter and drier regional climatic episodes.
Armon M, Dente E, Smith JA, Enzel Y, Morin E. Synoptic-scale control over modern rainfall and flood patterns in the Levant drylands with implications for past climates. Journal of Hydrometeorology [Internet]. 2018;19 (6) :1077–1096. Publisher's VersionAbstract
Rainfall in the Levant drylands is scarce, but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST) and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal characteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote-sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region.Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. ARST rainfall is local and intense, whereas TP rainfall is widespread and prolonged due to high precipitation efficiency and large-scale forcing. Thus, TP rainfall generates high-magnitude floods in the largest catchments; integration of numerous basins leads to sediment feeding from the south into the Dead Sea, exhibited in large sediment plumes. Anecdotal observations of the channel with the largest catchment in the region (Nahal HaArava) indicate that TP floods account for noticeable geomorphic changes in the channel. It provides insights into past intervals of increased flash flood frequency characterized by episodes of marked hydrogeomorphic work; such an increase is especially expected during intervals of southerly situated and southwesterly oriented STJs.