Publications by Year: 2017

2017
Dente E, Lensky NG, Morin E, Grodek T, Sheffer NA, Enzel Y. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea. Journal of Geophysical Research: Earth Surface [Internet]. 2017;122 (12) :2468–2487. Publisher's VersionAbstract

The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea ( > 30 m in ~35 years; ~0.5-1.3 m yr -1 ). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.

Belachsen I, Marra F, Peleg N, Morin E. Convective rainfall in dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region. Geophysical Research Abstracts EGU General Assembly [Internet]. 2017. Publisher's VersionAbstract
Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km 2 in size, moving from West to East in 13 ms −1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.
Yang L, Smith J, Baeck ML, Morin E, Goodrich DC. Flash Flooding in Arid/Semiarid Regions: Dissecting the Hydrometeorology and Hydrology of the 19 August 2014 Storm and Flood Hydroclimatology in Arizona. Journal of Hydrometeorology [Internet]. 2017;18 (12) :3103–3123. Publisher's VersionAbstract
The hydroclimatology, hydrometeorology, and hydrology of flash floods in the arid/semiarid southwestern United States are examined through empirical analyses of long-term, high-resolution rainfall and stream gauging observations, together with hydrological modeling analyses of the 19 August 2014 storm based on the Kinematic Runoff and Erosion Model (KINEROS2). The analyses presented here are centered on identifying the structure and evolution of flood-producing storms, as well as the interactions of space–time rainfall variability and basin characteristics in determining the upper-tail properties of rainfall and flood magnitudes over this region. This study focuses on four watersheds in Maricopa County, Arizona, with contrasting geomorphological properties. Flash floods over central Arizona are concentrated in both time and space, reflecting controls of the North American monsoon and complex terrain. Thunderstorm systems during the North American monsoon, as represented by the 19 August 2014 storm, are the dominant flood agents that determine the upper tail of flood frequency over central Arizona and that also shape the envelope curve of floods for watersheds smaller than 250 km2. Flood response for the 19 August 2014 storm is associated with storm elements of comparable spatial extent to the drainage area and slow movement for the three compact, headwater watersheds. Flood response for the elongated and relatively flat Skunk Creek highlights the importance of the spatial distribution of rainfall for transmission losses in arid/semiarid watersheds.
Marra F, Morin E, Peleg N, Mei Y, Anagnostou EN. Intensity-duration-frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean. Hydrology and Earth System Sciences [Internet]. 2017;21 (5) :2389–2404. Publisher's VersionAbstract
Intensity–duration–frequency (IDF) curves are widely used to quantify the probability of occurrence of rainfall extremes. The usual rain gauge-based approach provides accurate curves for a specific location, but uncertainties arise when ungauged regions are examined or catchment-scale information is required. Remote sensing rainfall records, e.g. from weather radars and satellites, are recently becoming available, providing high-resolution estimates at regional or even global scales; their uncertainty and implications on water resources applications urge to be investigated. This study compares IDF curves from radar and satellite (CMORPH) estimates over the eastern Mediterranean (covering Mediterranean, semiarid, and arid climates) and quantifies the uncertainty related to their limited record on varying climates. We show that radar identifies thicker-tailed distributions than satellite, in particular for short durations, and that the tail of the distributions depends on the spatial and temporal aggregation scales. The spatial correlation between radar IDF and satellite IDF is as high as 0.7 for 2–5-year return period and decreases with longer return periods, especially for short durations. The uncertainty related to the use of short records is important when the record length is comparable to the return period ( ∼ 50, ∼ 100, and ∼ 150 % for Mediterranean, semiarid, and arid climates, respectively). The agreement between IDF curves derived from different sensors on Mediterranean and, to a good extent, semiarid climates, demonstrates the potential of remote sensing datasets and instils confidence on their quantitative use for ungauged areas of the Earth.
Oriani F, Ohana-Levi N, Marra F, Straubhaar J, Mariethoz G, Renard P, Karnieli A, Morin E. Simulating Small-Scale Rainfall Fields Conditioned by Weather State and Elevation: A Data-Driven Approach Based on Rainfall Radar Images. Water Resources Research [Internet]. 2017 :8512–8532. Publisher's VersionAbstract
The quantification of spatial rainfall is critical for distributed hydrological modeling. Rainfall spatial patterns generated by similar weather conditions can be extremely diverse. This variability can have a significant impact on hydrological processes. Stochastic simulation allows generating multiple realizations of spatial rainfall or filling missing data. The simulated data can then be used as input for numerical models to study the uncertainty on hydrological forecasts. In this paper, we use the direct sampling technique to generate stochastic simulations of high-resolution (1 km) daily rainfall fields, conditioned by elevation and weather state. The technique associates historical radar estimates to variables describing the daily weather conditions, such as the rainfall type and mean intensity, and selects radar images accordingly to form a con- ditional training image set of each day. Rainfall fields are then generated by resampling pixels from these images. The simulation at each location is conditioned by neighbor patterns of rainfall amount and eleva- tion. The technique is tested on the simulation of daily rainfall amount for the eastern Mediterranean. The results show that it can generate realistic rainfall fields for different weather types, preserving the temporal weather pattern, the spatial features, and the complex relation with elevation. The concept of conditional training image provides added value to multiple-point simulation techniques dealing with extremely non- stationary heterogeneities and extensive data sets.
Marra F, Morin E, Peleg N, Mei Y, Anagnostou EN. Intensity–Duration–‎Frequency ‎curves from remote sensing rainfall estimates: comparing satellite and weather ‎radar over the ‎Eastern Mediterranean. Hydrology and Earth System Sciences [Internet]. 2017;accepted for publication. Publisher's VersionAbstract

Intensity–Duration–Frequency (IDF) curves are widely used to quantify the probability of occurrence of rainfall extremes. The usual rain gauge based approach provides accurate curves for a specific location, but uncertainties arise when ungauged regions are examined or catchment scale information is required. Remotely sensed rainfall records, e.g. from weather radars and satellites, are recently becoming available, providing high resolution information on rainfall extremes at regional or even global scales: their uncertainty and implications on water resources applications urge to be investigated. This study compares IDF curves from radar and satellite (CMORPH) estimates over the Eastern Mediterranean (covering Mediterranean, semiarid and arid climates) and quantifies the uncertainty related to their limited record on varying climates. We show that radar identifies thicker tail distributions than satellite, in particular for short durations, and that the shape parameters depends on the spatial and temporal aggregation scales. The spatial correlation between radar-IDFs and satellite-IDFs is as high as 0.7 for 2–5 years return period and decreases with longer return periods, especially for short durations. The uncertainty related to the use of short records is important when the record length is comparable to the return period (\~ 50 %, \~ 100 % and \~ 150 % for Mediterranean, semiarid and arid climates, respectively). The agreement between IDF curves derived from different sensors on Mediterranean and, to a good extent, semiarid climates, demonstrates the potential of remote sensing datasets and instils confidence on their quantitative use for ungauged areas of the Earth.