Publications by Author: Adam, Ori

2022
Elbaum E, Garfinkel CI, Adam O, Morin E, Rostkier-Edelstein D, Dayan U. Uncertainty in Projected Changes in Precipitation Minus Evaporation: Dominant Role of Dynamic Circulation Changes and Weak Role for Thermodynamic Changes. Geophysical Research Letters [Internet]. 2022;49 :e2022GL097725. Publisher's VersionAbstract
End of century projections from Coupled Model Intercomparison Project (CMIP) models show a decrease in precipitation over subtropical oceans that often extends into surrounding land areas, but with...
Armon M, Marra F, Enzel Y, Rostkier‐Edelstein D, Garfinkel CI, Adam O, Dayan U, Morin E. Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earth's Future. 2022;10 (1) :1–19.Abstract
Heavy precipitation events (HPEs) can lead to deadly and costly natural disasters and are critical to the hydrological budget in regions where rainfall variability is high and water resources depend on individual storms. Thus, reliable projections of such events in the future are needed. To provide high-resolution projections under the RCP8.5 scenario for HPEs at the end of the 21 st century, and to understand the changes in sub-hourly to daily rainfall patterns, weather research and forecasting (WRF) model simulations of 41 historic HPEs in the eastern Mediterranean are compared with "pseudo global warming" simulations of the same events. This paper presents the changes in rainfall patterns in future storms, decomposed into storms' mean conditional rain rate, duration, and area. A major decrease in rainfall accumulation (-30% averaged across events) is found throughout future HPEs. This decrease results from a substantial reduction of the rain area of storms (-40%) and occurs despite an increase in the mean conditional rain intensity (+15%). The duration of the HPEs decreases (-9%) in future simulations. Regionally maximal 10-min rain rates increase (+22%), whereas over most of the region, long-duration rain rates decrease. The consistency of results across events, driven by varying synoptic conditions, suggests that these changes have low sensitivity to the specific synoptic evolution during the events. Future HPEs in the eastern Mediterranean will therefore likely be drier and more spatiotemporally concentrated, with substantial implications on hydrological outcomes of storms. Plain Language Summary Heavy precipitation events are large storms that can recharge freshwater reservoirs, but can also lead to hazardous outcomes such as flash floods. Therefore, understanding the impacts of climate change on such storms is critical. Here, a weather model similar to those used in weather forecasts is used to simulate heavy precipitation events in the eastern Mediterranean. A large collection of storms is simulated in pairs: (1) historic storms, selected for their high impact, and (2) the same storms placed in a global warming scenario projected for the end of the 21 st century. Using these simulations we ask how present-day storms would look like were they to occur at the warmer end of the 21 st century. The future storms are found to produce much less rainfall compared to their historic counterparts. This decrease in rainfall is attributed mainly to the reduction in the area covered by storms' rainfall, and happens despite increasing rainfall intensities. These results suggest that the region will be drier in the future with larger dry areas during storms; however, over short durations, it would rain more intensely over contracted areas-increasing local hazards associated with heavy precipitation events.
2021
Marra F, Armon M, Adam O, Zoccatelli D, Gazal O, Garfinkel CI, Rostkier-Edelstein D, Dayan U, Enzel Y, Morin E. Toward Narrowing Uncertainty in Future Projections of Local Extreme Precipitation. Geophysical Research Letters [Internet]. 2021;48 (5) :e2020GL091823. Publisher's VersionAbstract
Abstract Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.
2020
Garfinkel CI, Adam O, Morin E, Enzel Y, Elbaum E, Bartov M, Rostkier-Edelstein D, Dayan U. The Role of Zonally Averaged Climate Change in Contributing to Intermodel Spread in CMIP5 Predicted Local Precipitation Changes. Journal of Climate [Internet]. 2020;33 (3) :1141–1154. Publisher's VersionAbstract
AbstractWhile CMIP5 models robustly project drying of the subtropics and more precipitation in the tropics and subpolar latitudes by the end of the century, the magnitude of these changes in precipitation varies widely across models: for example, some models simulate no drying in the eastern Mediterranean while others simulate more than a 50% reduction in precipitation relative to the model-simulated present-day value. Furthermore, the factors leading to changes in local subtropical precipitation remain unclear. The importance of zonal-mean changes in atmospheric structure for local precipitation changes is explored in 42 CMIP5 models. It is found that up to half of the local intermodel spread over the Mediterranean, northern Mexico, East Asia, southern Africa, southern Australia, and southern South America is related to the intermodel spread in large-scale processes such as the magnitude of globally averaged surface temperature increases, Hadley cell widening, polar amplification, stabilization of the tropical upper troposphere, or changes in the polar stratosphere. Globally averaged surface temperature increases account for intermodel spread in land subtropical drying in the Southern Hemisphere but are not important for land drying adjacent to the Mediterranean. The factors associated with drying over the eastern Mediterranean and western Mediterranean differ, with stabilization of the tropical upper troposphere being a crucial factor for the former only. Differences in precipitation between the western and eastern Mediterranean are also evident on interannual time scales. In contrast, the global factors examined here are unimportant over most of the United States, and more generally over the interior of continents. Much of the rest of the spread can be explained by variations in local relative humidity, a proxy also for zonally asymmetric circulation and thermodynamic changes.