Publications by Author: Borga, Marco

2021
Marra F, Armon M, Borga M, Morin E. Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales. Geophysical Research Letters [Internet]. 2021;48 (5) :e2020GL091498. Publisher's VersionAbstract
Abstract Orographic impact on extreme subdaily precipitation is critical for risk management but remains insufficiently understood due to complicated atmosphere-orography interactions and large uncertainties. We investigate the problem adopting a framework able to reduce uncertainties and isolate the systematic interaction of Mediterranean cyclones with a regular orographic barrier. The average decrease with elevation reported for hourly extremes is found enhanced at subhourly durations. Tail heaviness of 10-min intensities is negligibly affected by orography, suggesting self-similarity of the distributions at the convective scale. Orography decreases the tail heaviness at longer durations, with a maximum impact around hourly scales. These observations are explained by an orographically induced redistribution of precipitation toward stratiform-like processes, and by the succession of convective cores in multihour extremes. Our results imply a breaking of scale-invariance at subhourly durations, with important implications for natural hazards management in mountainous areas.
2020
Marra F, Borga M, Morin E. A Unified Framework for Extreme Subdaily Precipitation Frequency Analyses Based on Ordinary Events. Geophysical Research Letters. 2020;47 (18) :1–8.Abstract
The metastatistical extreme value approach proved promising in the frequency analysis of daily precipitation from ordinary events, outperforming traditional methods based on sampled extremes. However, subdaily applications are currently restrained by two knowledge gaps: It is not known if ordinary events can be consistently examined over durations, and it is not clear to what extent their entire distributions represent extremes. We propose here a unified definition of ordinary events across durations and suggest the simplified metastatistical extreme value formulation for dealing with extremes emerging from the tail, rather than the entire distributions, of ordinary events. This unified framework provides robust estimates of extreme quantiles (\textless10% error on the 100 yr from a 26 yr long record) and allows representations in which ordinary and extreme events share the scaling exponent. Future applications could improve our knowledge of subdaily extreme precipitation and help investigate the impact of local factors and climatic forcing on their frequency.
2019
Borga M, Comiti F, Ruin I, Marra F. Forensic analysis of flash flood response. Wiley Interdisciplinary Reviews: Water [Internet]. 2019;6 (2). Publisher's VersionAbstract
The last decade has witnessed the development of methodologies for the post‐flood documentation of both hydrogeomorphological and social response to extreme precipitation. These investigations are particularly interesting for the case of flash floods, whose space–time scales make their observations by conventional hydrometeorological monitoring networks particularly challenging. Effective flash flood documentation requires post‐flood survey strategies encompassing accurate radar estimation of rainfall, field and remote‐sensing observations of the geomorphic processes, indirect reconstruction of peak discharges—as well eyewitness interviews. These latter can give valuable information on both flood dynamics and the related individual and collective responses. This study describes methods for post‐flood surveys based on interdisciplinary collaborations between natural and social scientists. These surveys may help to better understand the links between hydrometeorological dynamics and geomorphic processes as well as the relationship between flood dynamics and behavioral response in the context of fast space–time changes of flooding conditions. This article is categorized under: Science of Water > Methods Science of Water > Hydrological Processes A flash flood and its forensic analysis.
2018
Amponsah W, Ayral PA, Boudevillain B, Bouvier C, Braud I, Brunet P, Delrieu G, DIdon-Lescot JF, Gaume E, Lebouc L, et al. Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth System Science Data [Internet]. 2018;10 (4) :1783–1794. Publisher's VersionAbstract
Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediterranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as the EuroMedeFF database) include (i) its coverage of varied hydro-climatic regions, ranging from Continental Europe through the Mediterranean to Arid climates, (ii) the high space–time resolution radar rainfall estimates, and (iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catchment areas (up to 3000km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude. The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany and Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hydrological models and for hydro-meteorological forecast systems. The dataset also provides a template for the analysis of the space–time variability of flash flood triggering rainfall fields and of the effects of their estimation on the flood response modelling. The dataset is made available to the public with the following DOI: https://doi.org/10.6096/MISTRALS-HyMeX.1493.
2016
Drobinski P, Da Silva N, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, et al. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Climate Dynamics [Internet]. 2016. Publisher's VersionAbstract
In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979–2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature–precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius–Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature–precipitation extreme relation sharply changes (or temperature break), ranges from about 20 \$\backslash$textdegree\C in the western Mediterranean to \textless10 \$\backslash$textdegree\C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean–atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070–2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature–precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature–precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature–precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region.
2014
Borga M, Morin E. Characteristics of Flash Flood Regimes in the Mediterranean Region. In: Diodato N, Bellocchi G Storminess and Environmental Change Climate Forcing and Responses in the Mediterranean Region. Dordrecht: Springer Netherlands ; 2014. pp. 65–76. Publisher's VersionAbstract
This work analyses the prominent characteristics of extreme storms and flash-flood regimes in two main areas of the Mediterranean region: the North-Western (comprising Spain, France and Italy) and South-Eastern region (Israel). The two areas are chosen to represent the two end members of variation in flash-flood regimes in the Mediterranean basin. Data from 99 events collected in the two areas (69 from the North-Western region and 30 from the South-Eastern region), for which occurrence date, catchment area and flood peak are available, were used to provide a detailed description the flash-flood seasonality patterns, the synoptic and mesoscale atmospheric controls, and flood envelope relationship. Results show that the flood envelope curve for the South-Eastern region exhibits a more pronounced decreasing with catchment size with respect to the curve of the North-Western region. The differences between the two relationships reflect variations in the fractional storm coverage of the basin and hydrological characteristics between the two regions. Seasonality analysis shows that the events in the North-Western region tend to occur between August and November, whereas those in the South-Eastern area tend to occur in the period between October and May, reflecting the relevant patterns in the synoptic conditions controlling the generation of intense precipitation events.
2012
Flaounas E, Drobinski P, Borga M, Calvet J-C, Delrieu G, Morin E, Tartari G, Toffolon R. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework. Environmental Research Letters [Internet]. 2012;7 :024017. Publisher's VersionAbstract
This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.