Abstract:
A new stochastic high-resolution synoptically conditioned weather generator (HiReS-WG) appropriate for climate regimes with a substantial proportion of convective rainfall is presented. The simu- lated rain fields are of high spatial (0.53 0.5 km2) and temporal (5 min) resolution and can be used for most hydrological applications. The WG is composed of four modules: the synoptic generator, the motion vector generator, the convective rain cell generator, and the low-intensity rainfall generator. The HiReS-WG was applied to a study region on the northwestern Israeli coastline in the Eastern Mediterranean, for which 12 year weather radar and synoptic data were extensively analyzed to derive probability distributions of con- vective rain cells and other rainfall properties for different synoptic classifications; these distributions were used as input to the HiReS-WG. Simulated rainfall data for 300 years were evaluated for annual rain depth, season timing, wet-/dry-period durations, rain-intensity distributions, and spatial correlations. In general, the WG well represented the above properties compared to radar and rain-gauge observations from the studied region, with one limitation—an inability to reproduce the most extreme cases. The HiReS-WG is a good tool to study catchments' hydrological responses to variations in rainfall, especially small-size to medium-size catchments, and it can also be linked to climate models to force the prevailing synoptic conditions.
Website