Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information


Morin E, Jacoby Y, Navon S, Bet-Halachmi E. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information. Advances in Water Resources [Internet]. 2009;32 :1066–1076.

Date Published:



Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash- flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipita- tion estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Val- idation was performed for a subsequent 5-year period for the same catchment and then for an entire 10- year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.