Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars

Date Published:

jan

Abstract:

The spaceborne weather radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite can be used to adjust Ground-based Radar (GR) echoes, as a function of the range from the GR site. The adjustment is based on the average linear radar reflectivity in circular rings around the GR site, for both the GR and attenuation-corrected NearSurfZ TRMM Precipitation Radar (TPR) images. In previous studies, it was found that in winter, for the lowest elevation of the Cyprus C-band radar, the GR/TPR equivalent rain rate ratio was decreasing, on average, of approximately 8 dB per decade. In this paper, the same analysis has been applied to another C-band radar in the southeastern Mediterranean area. For the lowest elevation of the “Shacham” radar in Israel, the GR/TPR equivalent rain rate ratio is found to decrease of approximately 6 dB per decade. The average departure at the “reference”, intermediate range is related to the calibration of the GR. The negative slope of the range dependence is considered to be mainly caused by an overshooting problem (increasing sampling volume of the GR with range combined with non-homogeneous beam filling and, on average, a decreasing vertical profile of radar reflectivity). To check this hypothesis, we have compared the same NearSurfZ TPR images versus GR data acquired using the second elevation. We expected these data to be affected more by overshooting, especially at distant ranges: the negative slope of the range dependence was in fact found to be more evident than in the case of the lowest GR elevation for both the Cypriot and Israeli radar.

Website